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A B S T R A C T   

Medical data, particularly the complex brain imaging structures, acquisition presents significant difficulties and 
high diagnostic expenses, resulting in a scarcity of the trainable samples in the real-world scenarios. To overcome 
this limitation, we present an active learning-based sampling strategy that selects the most informative samples 
from the unlabeled candidate sample pool for expert annotation, leading to high classification performance with 
a reduced number of training samples. This study adopts a patch-level perspective and introduces a multi- 
instance learning framework for Alzheimer’s Disease diagnosis. Initially, a patch pre-selection module is 
designed to identify pathology-prone regions while excluding background areas and irrelevant information. 
Subsequently, an inner-patch local attention mechanism block and an outer-patch global attention mechanism 
block are developed to enhance the extraction of discriminative local and global information by the network 
model. Finally, an active learning sampling strategy is devised to minimize the costs associated with data 
acquisition and expert annotation in medical domain. The effectiveness of the proposed network framework and 
active learning strategy was validated through four sets of control experiments on the ADNI dataset.   

1. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease with an 
insidious onset and progressive development [1]. Although Alzheimer’s 
disease itself is not a fatal illness, the disease is prone to complications 
such as pneumonia, bed sores, and malnutrition [2]. Studies have shown 
that the average lifespan of Alzheimer’s patients is 5-10 years shorter 
than that of other healthy peers [1]. Therefore, the harm of this disease 
should not be underestimated. Up to now, there is no cure for Alz
heimer’s disease, and the progression of the disease can only be slowed 
down through improving the patient’s quality of life, medication, and 
non-pharmacological treatments [2]. Early prevention and treatment 
remain the optimal strategy for addressing this symptom [3]. The entire 
process of Alzheimer’s disease can be roughly classified into four diag
nostic categories: normal cognition (NC), stable mild cognitive impair
ment (sMCI), progressive mild cognitive impairment (pMCI), and 
Alzheimer’s disease (AD) [4]. It is beneficial to investigate a model that 
can assist neurology experts in accurately and efficiently detecting early 
signs of Alzheimer’s disease. 

Due to its non-ionizing radiation, absence of bone artifacts, multi- 
faceted and multi-parametric imaging capabilities, high soft tissue 

resolution, and the ability to display vascular structures without the 
need for contrast agents, Magnetic Resonance Imaging (MRI) has sig
nificant advantages [5]. Therefore, most existing brain scans of Alz
heimer’s patients are stored in the form of structured MRI (sMRI) [6]. 
The traditional sMRI-based diagnostic approaches for Alzheimer’s dis
ease typically involve segmenting the entire MR image into multiple 
regions of varying scales to facilitate the extraction of local abnormal 
features [7]. Currently, the sMRI-based researches can be broadly 
divided into four classes: (1) Voxel-level [8], (2) Region-level [9], (3) 
Sliced-level [10], and (4) Patch-level [6]. Patient images saved in this 
way can be seen as the domain of multi-instance learning, i.e., in the 
scan images of Alzheimer’s disease patients, only local information 
contains pathological features of Alzheimer’s disease, while the rest of 
the imaging are indistinguishable from those of ordinary patients. In this 
study, we model the problem of Alzheimer’s disease detection from a 
patch-level perspective. After that, based on a multi-instance learning 
framework, we introduce an in-patch local attention mechanism and an 
out-of-patch global attention mechanism to construct the network. This 
strategy not only reduces the interference of invalid information in the 
imaging, but also improves the model’s focus on the more important 
instances in the ‘bag’. 
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With the advancement of datamining technology and scientific level, 
countless deep learning-based methods have been applied to real-world 
scenarios with outstanding performance [11]. The deep learning-based 
models can fit arbitrary mapping from a large number of trainable 
data [12]. However, the condition of large amount of trainable data is 
not available in medical scenarios due to the high cost of scanning 
medical images and the difficulty of manual annotation [13]. To address 
this issue, strategies such as weakly supervised learning [14], 
semi-supervised learning [15], transfer learning [16], data augmenta
tion [17], ensemble learning [11], active learning [18] have emerged. 
Among them, weakly supervised learning uses labels that are less ac
curate or less complete than fully labeled data to train the model, which 
can effectively reduce the cost and time of annotation [14]. However, in 
this approach, weak labels may not provide enough information to train 
an accurate model, resulting in performance degradation, additionally, 
the noise in weak labels can also have a significant negative impact on 
the training and prediction results of the model [19]. Semi-supervised 
learning is a technique that utilizes a limited amount of labeled data 
and abundant unlabeled data for training and prediction, which can 
directly reduce the cost of annotation [15]. Nevertheless, this approach 
demands a large quantity of high-quality unlabeled data, whose acqui
sition in medical scenarios may be challenging or even infeasible. 
Therefore, the semi-supervised learning strategy may not always 
represent the optimal solution for medical applications [20]. Transfer 
learning leverages pre-labeled datasets and models to quickly train a 
high-performance model in a new domain, thereby reducing the anno
tation cost of new datasets [16]. Still, in transfer learning, if appropriate 
source and target domains are not identified, the accuracy of the model 
may be significantly compromised [21]. Data augmentation is a meth
odology that expands and transforms existing labeled data to increase 
sample diversity, reduce annotation costs, and escalate the number of 
trainable samples [17]. Yet, the augmented data may alter the sample 
distribution in the training set, leading to a decrease in accuracy on the 
test set [22]. Ensemble learning combines the predictions of multiple 
models to improve their accuracy and robustness, resulting in a reduced 
impact of mislabeled data [11]. However, ensemble learning is 
computationally expensive, and its final prediction results depend on the 
diversity among the models being integrated. Active learning reduces 
annotation costs by selecting the most informative samples for human 
experts to annotate, which can effectively address or avoid the afore
mentioned issues [18]. This strategy is particularly suitable for medical 
scenarios with a high annotation difficulty and a limited number of 
trainable samples. 

Accordingly, our work designs an instance-based patch-level distri
butional active learning strategy for the diagnosis of Alzheimer’s dis
ease. A summary of our main contributions can be outlined as follows:  

(1) Due to the presence of a large amount of background and invalid 
areas in the entire MR image, inputting the whole image into the 
network would lead to increased time and space consumption 
and introduce substantial noise. Therefore, this study treats each 
patch as a feature and proposes a patch pre-selection module 
based on the Relief model. However, traditional Euclidean dis
tance used to measure the difference between patches may cause 
the loss of spatial information within the patch. To overcome this 
issue, the study introduces a block-wise Hash difference measure 
to replace Euclidean distance, which significantly preserves 
spatial and structural information within each patch. Subse
quently, the importance of each patch is calculated, and blocks 
with relatively higher significance are selected as candidate 
blocks for subsequent experiments in the model.  

(2) Following the patch pre-selection module, in order to further 
reduce the negative impact of irrelevant instances in the ‘bag’, we 
formulate the problem of Alzheimer’s Disease diagnosis with 
sMRI as a patch-based multi-instance problem. This paper designs 
a Patch-Level Global and Local Attention-based Multi-Instance 

Deep Learning Model (PLGLA) that utilizes attention mechanisms 
to enhance Alzheimer’s disease diagnosis performance. In addi
tion, this model also lays the foundation for learning instance- 
level data distribution tasks in the subsequent active learning 
module. 

(3) To address the challenges posed by limited medical image sam
ples and difficult labeling, this paper constructs a Patch-Level 
Instance Distribution-based Active Learning Strategy (PIDAC). 
Initially, we design a network that can implicitly learn the 
Gaussian distribution of several blocks with the highest attention 
in the PLGLA model for different categories of samples. We then 
leverage the additivity property of Gaussian distribution, to 
calculate the data distribution of these blocks among various 
categories. Finally, we select the least discriminative samples 
from the candidate data set based on both sample-level and 
decision-level Gaussian distributions, and incorporate them into 
the training set to minimize labeling costs. 

The remainder of this paper is organized as follows: Section II out
lines the related works on Multi-Instance Learning, Attention Mecha
nism, and Active Learning. Section III presents the materials studied in 
this research and introduces the proposed PLGLA and PIDAC models. 
The experimental results and analysis of experiments are presented in 
Section IV. In Section V, further discussions are conducted on the 
designed model from the perspectives of statistics, model efficiency, 
visualization, and generalizability, and Section VI provides a summary 
of this paper. 

2. Related works 

2.1. Multi-instance learning 

In medical scenarios, it is difficult to accurately annotate all affected 
areas, and there is not much difference between the other areas of pa
tients and healthy individuals, therefore, many disease diagnosis prob
lems in medical images can be considered as a category of multi-instance 
learning tasks [6]. Specifically, multi-instance learning is a supervised 
learning method, in which the input data consists of bags of multiple 
instances instead of single instances. These bags are labeled as positive 
or negative instead of each instance being labeled [23,24]. The mathe
matical model can be defined as: Suppose that a training dataset D = {Bi,

yi}, where Bi denotes a bag consisting of multiple instances, i.e., Bi =

{xi,1,xi,2,⋯,xi,n}, yi ∈ {0,1} is the label of Bi, yi = 1 represents that the 
bag Bi is positive, while yi = 0 indicates that the bag Bi is negative. For 
each bag, there are n instances in the i th bag, and the number of in
stances in different bags may vary. For the instance xi,j in the Bi, its 
corresponding label yi,j(1 ≤ j ≤ n) is unknown. When the label of all 
instances in the Bi are 0, i.e., 

∑
yi,j = 0,(yi,j ∈ {0,1}, j = 1,2,⋯,n), then 

the label yi w.r.t Bi is 0, i.e., yi = 0, otherwise yi = 1. The mission of 
multi-instance learning is to achieve a predictor f : B→y from D. 

In recent years, numerous scholars have explored the application of 
multi-instance learning, which has shown promising performance in the 
field of computer-aided medical diagnosis [25]. Liu et al. [26] proposed 
a landmark-based deep multi-instance learning neural network for brain 
disease diagnosis, this framework predicted the final disease status of 
the patient by capturing the local structural information conveyed by 
the image patches located by landmark localization and the overall 
structural information generated by all detected landmarks. Couture 
et al. [27] designed a novel approach, referred to as MIL pooling, this 
method was proposed utilizing the quantile function to summarize 
predictions from smaller regions into an image-level classification for 
breast tumor histology. Zhu et al. [6] first designed a patch selection 
strategy, then they modeled the patch-based sMRI brain images as a 
multi-instance learning problem and a dual attention module was 
designed to further increase the focus on the lesion areas. The 
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above-mentioned research considers medical disease detection tasks as 
multi-instance learning tasks to reduce the negative impact of non-lesion 
areas on the final prediction results. Inspired by these study contents, 
this paper formulates the problem of Alzheimer’s Disease diagnosis with 
sMRI as a patch-based multi-instance problem and designs an 
inner-patch local attention module and an outer-patch global attention 
module to simultaneously focus on multiple lesion areas. However, 
while MIL approaches have shown promise, the interpretation of their 
decisions can be challenging due to the lack of explicit localization in
formation [6]. 

2.2. Attention mechanism 

In the field of medicine, the task of medical image processing usually 
focuses on specific diseases or lesions, so the attention mechanism can 
help the model better focus on key areas and improve diagnostic accu
racy [6], furthermore, thanks to the excellent interpretability of the 
attention mechanism, this module can assist medical experts in some 
cases in identifying disease regions that are typically difficult to perceive 
[28]. So far, numerous attention-based derivative models have emerged 
based on the theory of generalized attention mechanism and have been 
successfully applied to various medical scenarios [3]. Cheng et al. [29] 
proposed a dual-attention domain adaptation segmentation network for 
cross-modality medical image segmentation, which normalizes the 
domain adaptation module from both spatial and category perspectives 
through two attention maps, thereby improving the model’s general
ization ability and accuracy. The network performs well in 
cross-modality medical image segmentation tasks. Shang et al. [30] 
designed a gated multi-attention feedback network for the medical 
image Super-resolution task. The network used a gate-activated mul
ti-feedback network as the backbone to extract hierarchical features. 
Additionally, a Hierarchical Attention Feature Extraction module is 
introduced to refine the feature maps, and a Channel-Spatial Attention 
Reconstruction module is established to enhance the representation 
ability of semantic feature maps. Since the high adaptability of attention 
mechanisms to medical images, this paper presented an inner-patch 
local attention module and an outer-patch global attention module to 
further enhance the focus on lesion area. 

2.3. Active learning 

Although we can consider attempting to combine multiple-instance 
learning with attention mechanisms to enhance focus on the patholog
ical regions and attenuate noise interference from normal regions, 
however, there is still a pressing issue at hand. Medical sample collection 
poses challenges, with high costs for annotation and a limited avail
ability of trainable samples [31]. Therefore, the paramount concern is 
how to train a classifier using a reduced number of samples while 
attaining performance that approaches that of a classifier trained on the 
complete dataset. Fortunately, Active Learning has become a promising 
approach to address these issues [18]. Active Learning is a 
semi-supervised learning method that aims to improve the performance 
of classifiers by minimizing the number of labeled samples [32]. In 
Active Learning, the classifier can actively select some unlabeled sam
ples for labeling to better learn the classifier. In popular terms, assuming 
there are n unlabeled samples, each represented by m features, the input 
of active learning can be represented as an n × m matrix X, where each 
row represents an unlabeled sample and each column represents a 
feature. Meanwhile, the goal of active learning is to learn a classifier f(X)
to predict the labels Y of the samples. In active learning, the classifier 
selects some unlabeled samples to be labeled in order to better learn the 
classifier. In other words, the classifier selects some samples to be 
labeled based on some active learning strategies, and then adds these 
labeled samples to the labeled sample set to retrain the classifier. This 
process is iterated until the performance of the classifier reaches the 
expected level or the number of labeled samples reaches the preset 

upper limit [33]. 
Therefore, based on the data distribution of the positive and negative 

datasets, this article selects the most uncertain samples with the greatest 
difference in distribution from the known positive and negative datasets. 
In addition, to increase the diversity of the sampled samples, we add a 
constraint that the sampling can make the distribution of the current 
labeled dataset (comprehensive consideration of positive or negative 
classes) change the most. Finally, the designed patch-based active 
learning strategy considers multiple instances (patches) in a sample, 
which minimizes the interference of noisy data on sampling. 

3. Our method 

In this section, we provide the mathematical model and imple
mentation details of our proposed method. The framework of the 
developed method is illustrated in Fig. 1 and consists of three main 
components: (1) A patch pre-selection model, (2) A Patch-Level Global 
and Local Attention-based Multi-Instance Deep Learning network 
(PLGLA), and (3) A Patch-Level Instance Distribution-based Active 
Learning strategy (PIDAC). 

3.1. The patch pre-selection model 

Given that the original image comprises a substantial proportion of 
background areas, and pathological information is typically confined to 
small, localized regions, processing the entire image directly not only 
incurs significant time and space costs, but also undermines the model’s 
capacity to concentrate on critical areas. Therefore, it is necessary to 
design a patch pre-selection model to reduce the negative impact of 
unnecessary information. Relief, as a classic feature selection algorithm, 
aims to remove irrelevant and redundant features. For a binary classi
fication problem, the mathematical model of this algorithm can be 
represented as follows: 

Suppose that a training dataset D = {(xi, yi)}
n
i=1, where n is the 

number of training data, xi denotes the i th sample in the training 
dataset, which is represented by an m-dimensional feature vector, i.e., 
xi = {x1

i ,x2
i ,⋯,xm

i }, and yi ∈ {0,1} indicates the label of xi. Therefore, 
the set of positive samples and negative samples in D can be expressed as 
Dp = {xi

⃒
⃒xi ∈ D, yi = 1} and Dn = {xi

⃒
⃒xi ∈ D,yi = 0}, respectively. Then, 

for a given hyper-parameter k, the weight of each feature xj (1 ≤ j ≤ m) 
can be computed as follow: 

w(j) = w(j) −
μ
k

∑k

l=1
dif
(
xi,N+

l (xi)
)
+

μ
k

∑k

l=1
dif
(
xi,N −

l (xi)
)
, (1)  

where N+
l (xi) ∈ Dp and N−

l (xi) ∈ Dn denote the l-th nearest distance to 
the same or different class as xi, respectively. μ = 1, if yi = 1, and μ = −

1, if yi = 0. dif(xi, xj) indicates the diversity between xi and xj, and in 
the conventional Relief model, the Euclidean distance was used to 
calculate the difference between two samples. For the Eq. (1), the 
feature weight w will be continuously updated with the increase of 
iteration times. The specific algorithm description and parameter 
introduction can be found in [34]. 

The Relief algorithm offers several advantages. Firstly, it is capable 
of handling high-dimensional datasets and performs well in such data
sets. Secondly, the Relief algorithm measures the importance of features 
based on the distance between samples, effectively filtering out redun
dant and irrelevant features, thereby improving the model’s general
ization performance. Thirdly, the Relief algorithm calculates feature 
weights based on the distance between instances, without involving is
sues of probability distribution shift. Finally, the Relief algorithm does 
not rely on prior statistical knowledge or machine learning models. 
Hence, we propose to split the original MR image into several patches of 
the same size, and treat these blocks as features. Subsequently, a patch 
selection algorithm is designed based on the Relief algorithm. 
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Fig. 1. The framework of the developed method.  

Fig. 2. The computational process of hash-based difference. input1 and input2 are two nearly symmetrical regions of the same AD patient, but the structural dif
ferences between these two regions are significant while the spatial differences are minimal. input2 and input3 are images of an AD patient and a healthy patient, 
respectively, so the structural and spatial differences between these two images are relatively larger. 
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In our approach, we treat a spatial patch as a feature. However, using 
the Euclidean distance to measure the difference between two patches 
may result in significant loss of spatial information. To address this 
issue, this paper considers introducing Hash difference instead of 
Euclidean distance. Due to the large size of the original image and the 
intricate complexity of effective structures and noise information, we 
employ two consecutive average down-sampling operations to extract 
more macroscopic spatial information, reduce noise interference, and 
simultaneously reduce the image size. 

For a given MR image I ∈ Rl×w×h, l, w, h indicate the length, weight, 
and height of I, suppose that a down-sampling operation with a stride 
size of 2 is ⊗2, and a convolution kernel size of (3,3,3) is K (3,3,3), then 
we can obtain a preprocess image I′ ∈ Rl/4×w/4×h/4 after two consecutive 
average down-sampling operations, which is defined as Eq. (2). 

I′ = I⊗2K (3, 3, 3)⊗2K (3, 3, 3). (2) 

In order to facilitate subsequent difference calculations, we per
formed a discretization operation on I′, which sets the elements corre
sponding to positions greater than the mean to 1 and those less than or 
equal to the mean to 0. The specific mathematical model is shown in Eq. 
(3), and the corresponding detailed example can be found in Fig. 2. 

I″(i, j, k) =
{

1, I′(i, j, k) > mean(I′)
0, I′(i, j, k) ≤ mean(I′)

, 1 ≤ i ≤
l
4
, 1 ≤ j ≤

w
4
, 1 ≤ k ≤

h
4
, (3)  

where mean(I′) indicates the average pixel value of patch I′. In compar
ison, the function described in Eq. (3) shares similarities with binary 
segmentation algorithms. However, it possesses a simpler principle and 
operates at a higher speed. It is sufficient for application to brain MR 
images with fewer details, a single structure, and a significant contrast 
between foreground and background regions. Consequently, this 
formulation enables the extraction of cerebral structures from individual 
patches, thereby generating corresponding hash values for each patch. 
These hash values can subsequently be employed in the computation of 
inter-patch similarity. 

After that, we calculate the difference between two patches from 
both spatial difference and structural difference perspectives simulta
neously. Suppose that two patches Ia and Ib, then we can get two pre
processed patches I″a and I″b from the Eqs. (2) and (3). The spatial 
difference and structural difference between Ia and Ib can be defined, 
respectively, as 

Difspatial(Ia, Ib) = 64⋅
Δ
(
flatten

(
I″

a

)
, flatten

(
I″

b

))

(l × w × h)
, (4)  

Difstructural(Ia, Ib) = 64⋅
count

(
I″

a XOR I″
b

)

(l × w × h)
, (5)  

where flatten and count denote the flattening and counting operations 
respectively, and Δ(a, b) = (count(a = = 1) − count(b = = 1)). In 
addition, it is evident that 0 ≤ Difspatial ≤ 1, 0 ≤ Difstructural ≤ 1, and iff 
I″
a ≡ I″

b, Difspatial, Difstructural = 0. 
For convenience, we have presented a visual depiction using three- 

dimensional patches (note that we are using a slice from each patch as 
the visualization output) as the illustrative examples. The specific 
flowchart of the algorithm is delineated in the Fig. 2. It is worth noting 
that Down-Sampling is performed to optimize resource utilization. The 
results obtained by computing similarity using the original images are 
generally similar to those obtained after down-sampling twice. How
ever, there is a significant reduction in time complexity. When Down- 
Sampling is performed for a third time or more, the similarity may un
dergo more substantial changes. Additionally, Down-Sampling can help 
reduce the differences between the same image before and after a short- 
distance displacement to some extent. Therefore, we have chosen to 
perform two rounds of Down-Sampling. 

Both the spatial and structural information are of equal significance 
when computing the dissimilarity between two patches. Hence, this 
article uses the arithmetic mean of Difspatial and Difstructural to replace the 
traditional difference calculation method in the Relief model. The new 
formula for calculating feature weights can be written as follows: 

w(j) = w(j) −
μ

2⋅k
∑k

l=1

(
Difspatial

(
xi,N+

l (xi)
)
+Difstructural

(
xi,N+

l (xi)
))

+
μ

2⋅k
∑k

l=1

(
Difspatial

(
xi,N −

l (xi)
)
+Difstructural

(
xi,N −

l (xi)
))
. (6) 

Remark: After preprocessing the MR images corresponding to each 
patient, we segment the entire image into lots of patches based on their 
size and assign unique identifiers to each patch. Therefore, there will be 
no overlapping patches in our patch selection strategy. The detailed flow 
of the patch pre-selection strategy is shown as follows.  

The Patch Pre-selection Strategy 

Input: A training dataset D, the number of the nearest neighbor k, the number of 
samplings s, the maximum number of iterations max iter 
Output: The weights of each patch w 

1. Initialize the weights w = zeros(n,m). 
2. Divide the training dataset D into Dp and Dn. 
3. For iter = 1 to max iter 
4. For i = 1 to s 
5. Random select a sample x ∈ D. 
6. Retrieve a sample set N+(x) of k nearest neighbor samples from Dp. 
7. Retrieve a sample set N− (x) of k nearest neighbor samples from Dn. 
8. For j = 1 to m 
9. Update the weight of j-th patch w(j) via Eq. (6). 
10. End For 
11. End For 
12. End For 
13. Return The weights of each patch w.  

3.2. Patch-level global and local attention-based multi-instance deep 
learning network 

After the patch pre-selection module, we have roughly identified the 
patches that are most likely to contain lesion areas. In order to further 
improve the model’s focus on the specific lesion areas and increase ac
curacy in diagnosis, two attention mechanism blocks, the inner-patch 
local attention block and the outer-patch global attention block, are 
designed in this section.  

(a) The inner-patch local attention block 

The initial section of this block serves as the underlying structure, 
which endeavors to acquire highly abstract characteristics from the 
primary patches and minimize the dimension of feature maps. The 
proposed underlying structure comprises four layers, each of which is 
composed of a 3D convolutional module followed by a 3D batch 
normalization module and a ReLU activation function. For clarity, we 
denote the four layers as Layer1 to Layer4, and the corresponding con
volutional modules as Conv1 to Conv4, respectively. The batch normal
ization and activation functions are referred to as BN and ReLU, 
respectively. The kernel size of Conv1 is set to 4× 4× 4, while Conv2 to 
Conv4 employ a kernel size of 3× 3× 3. The channels depths of Conv1 to 
Conv4 are sequentially set to 12, 36, 48 and 48. In addition, to decrease 
the size of feature maps and enhance the extraction of significant in
formation from them, we have incorporated a 3D max pooling layer with 
a filter size of 2 × 2 × 2 between Layer2 and Layer3 for down-sampling. 
Afterwards, we designed an inner-patch local attention mechanism 
based on channel attention mechanism to enhance the model’s attention 
to important information in the channels. The architecture of the inner- 
patch local attention block is depicted in Fig. 3. Additionally, assuming 
the input size of selected patch is 1× 32× 32× 32, the specific imple
mentation details of Layer1 to Layer4 are shown in Fig. 3(b). 
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Then we present the mathematical model of the designed inner-patch 
local attention block. Suppose that the training dataset is denoted by D =
{X1,X2,⋯,Xn}, where Xi ∈ Rp×c×l×w×h, and c, l, w, h indicate the number 
of channels, length, weight, height of the input image, respectively, p is 
the number of selected patches. Subsequently, we define the feature 
extraction operation of the underlying structure as Ftr with θtr denoting 
the corresponding trainable parameters. For any X ∈ D, the output U can 
be obtained via the following equation: 

U = Ftr(X, θtr), (7)  

where U = {U1,U2,⋯,UC} and Ui ∈ Rυ×υ×υ, C is the number of chan
nels. Then, we use a global average pooling operation Fsq to produce 
channel-wise statistics, where the Fsq is applied to each channel c and 
can be expressed as 

Fsq(Uc) =
1

υ × υ × υ
∑υ

i=1

∑υ

j=1

∑υ

k=1
Uc(i, j, k). (8) 

After that, in order to leverage the information gathered during the 
squeeze operation, we elect to utilize a basic gating mechanism with a 
sigmoid activation: 

Fex
(
Fsq(U),W

)
= ReLU

(
W2⋅δ

(
W1⋅Fsq(U)

))
, (9)  

where W1 and W2 are two trainable weight matrixes. The output of this 
block is ultimately generated by rescaling the intermediate feature map 

U with Fex(Fsq(U),W): 

Fscale
(
U,Fex

(
Fsq(U),W

))
= Fex

(
Fsq(U),W

)
⋅U, (10)  

where X̃ = Fscale(U,Fex(Fsq(U),W)) = {x̃1, x̃2,⋯, x̃C}, and each x̃i can be 
calculated by Fex(Fsq(Ui),W)⋅Ui.  

(a) The outer-patch global attention block 

After the inner-patch local attention block, we apply a mean average 
operation along the channel dimension for each patch to obtain the final 
feature representation of each patch. The attention mechanism 
employed in the outer-patch global attention block is similar to the one 
used in the local attention block. In this module, we regard each patch as 
a channel in the local attention mechanism, and introduce a patch-level 
attention mechanism followed by a feature decoding structure. The 
decoding structure consists of two convolutional layers with kernel sizes 
of 2× 2× 2, namely Conv5 and Conv6, and two linear layers, namely 
Line1 and Line2. The channel depths of Conv5 and Conv6 are set to 32 and 
16, respectively, and each is followed by batch normalization and ReLU 
activation. Additionally, a global average pooling operation is per
formed after Conv6. The out features for Line1 and Line2 are set to 16 and 
2, respectively. ReLU activation is applied after Line1, while Softmax is 
used after Line2. The detailed structure of the outer-patch global atten
tion block and decoding network is shown in Fig. 4, moreover, suppose 

Fig. 3. The architecture of the inner-patch local attention block. (a) Overall architecture; (b) Details implementation of Ftr.  

Fig. 4. The architecture of the outer-patch global attention block. (a) Overall architecture; (b) Details implementation of Feature Decoding Structure.  
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that the input size of feature map is 60× 48× 9× 9 × 9, the specific 
implementation detail of Feature Decoding Structure (Layer1, Layer4, 
Line1, and Line2) is shown in Fig. 4(b). 

Next, we will describe the proposed outer-patch global attention 
block using a series of mathematical formulas. Assuming that X̃ = {X̃1,

X̃2,⋯, X̃n} is the training set obtained through the inner-patch local 
attention block, where X̃i ∈ Rp×C×υ×υ×υ. Then the channel-level average 
pooling operation can be defined as 

Ũ = Fcap(X̃), (11)  

where Ũ = {Ũ1, Ũ2,⋯, Ũn} and Ũi ∈ Rp×υ×υ×υ. Subsequently, similar to 
the attention mechanism described above, a novel feature representa
tion is obtained through Fscale(Ũ,Fex(Fsq(Ũ),W)). Then, suppose that the 
decoding structure is Fdecode, and the classification result Y can be 
denoted as 

Y = Fdecode
(
Fscale

(
Ũ,Fex

(
Fsq(Ũ),W

))
, θde

)
, (12)  

where Y = {0,1} represents the final prediction result, and θde indicates 
the trainable parameters of the decoding network. The above-mentioned 
network (PLGLA) aims at learning an optimal map: X→Y by minimizing 
the cross-entropy loss function. 

3.3. Patch-level instance distribution-based active learning strategy 

Due to the scarcity of actual MRI samples in real-world scenarios and 
the difficulty in diagnosis, it is urgent to train a model with high disease 
recognition rate using the least amount of training data. In the previous 
section, we have learned the importance of each instance from the outer- 
patch global attention block. Next, we attempt to design an active 
learning-based sampling strategy based on the distribution of instances. 
Specifically, we first use a network framework to implicitly learn the 
data distribution of high-importance instances, i.e., the mean and vari
ance of the Gaussian distribution. Then, based on the known instance 
distribution and class information, we design a sample selection strat
egy. The detailed mathematical model of this strategy is shown below: 

Suppose that DL = (XL,YL) = {(xL
i , yL

i )}
nL
i=1 is the labeled dataset, DC 

= XC = {xC
j }

nC

j=1 
is the candidate dataset, where nL≪nC, yL

i ∈ {0,1}, D+
L =

{{(xL
i , yL

i )|yL
i = 1}n+

L
i=1} ⊆ DL and D−

L = {{(xL
i , yL

i )|yL
i = 0}n−

L
i=1} ⊆ DL. Then, 

we focus on DL, and using the PLGLA model, we can compute two 
instance-level weight matrixes, namely W+

DL
∈ Rn+

L ×p and W−
DL

∈ Rn−
L ×p, 

for the positive and negative classes, respectively. The mathematical 
formula is denoted as 

W±
DL

= PLGLA
(
D±

L

)
. (13)    

(a) Implicit distributed learning block: 

It is obviously that not all the instances are equally important. In this 
block, we select the top-k most important instances from both the pos
itive and negative classes. Then, we construct a network structure to 
implicitly learn the data distribution of these important instances. The 
specific structure of this network includes an encoder module, a decoder 
module, and a data distribution learning module. 

The encoder module is utilized to encode the selected high- 
importance instances into a latent space, and it comprises of three 3D 
convolutional layers and a linear layer. The channel depths of these 3D 
convolutional layers are set to 24, 48, and 72, respectively. The kernel 
size, stride, and padding are set to 3× 3× 3, 2, and 1, respectively. Each 
of these 3D convolutional layers is followed by a batch normalization 
(BN) layer and rectified linear unit (ReLU) activation function. The 
linear layer has an output size of 384 and is also followed by a ReLU 
activation function. 

The decoder module is used to reconstruct the instances from the 
latent space. In contrast to the encoder module, the decoder module 
consists of a linear layer and three deconvolutional layers, whose cor
responding parameters correspond to those of the encoder module. 
Except for the last deconvolutional layer, which is followed by a Tanh 
activation function, the structure of the other layers remains unchanged. 

The data distribution learning module is used to implicitly learn the 
data distribution of high-importance instances in the latent space. This 
module comprises of three linear layers, of which the first two are par
allel, aimed to output the mean and variance (μ, σ) of the instance. 
Subsequently, we perform sampling based on probability, and the 
sampling formula is given by Eq. (14). The purpose of the third linear 
layer is to map the low-dimensional representation of the sampled data 
to a higher dimension. 

L = μ + eσ/2⋅eps, (14)  

where eps denotes a noise vector sampled from the standard normal 
distribution (with mean 0 and variance 1). During the process of 
learning the implicit instance distribution, we utilize the similarity be
tween input instances and reconstructed instances as the objective 
function. The specific architecture is shown in Fig. 5.  

(a) Active Learning-based sampling block 

In this block, our objective is to select appropriate samples for 
annotation. As previously described, we have learned the implicit data 
distribution of each instance, and subsequently, we have designed an 
active learning sampling strategy based on these distributions. Let DL, 
DC, D+

L , and D−
L denote the labeled dataset, candidate dataset, labeled 

positive dataset, and labeled negative dataset, respectively. Addition
ally, we assume that the set of the top-k most significant instances in D+

L , 
and D−

L are represented by sets UD+
L
= {U+

1 ,U
+
2 ,⋯,U+

k } and UD−
L
= {U−

1 ,

U−
2 ,⋯,U−

k }, respectively, and their distributions can be denoted as p(U+
i )

and p(U−
i ). Note that the same instance may be selected in both UD+

L 
and 

UD−
L
. After that, for each X ∈ DC, where X = {x1,x2,⋯,xp}, xi represents 

the i th instance of X and their distributions can be described as q(xi), 
then the uncertainty of X can be defined as 

amb(X) =

⃒
⃒
⃒
⃒
⃒
⃒

∑

U+
i ∈UD+

L

∫ p
(
U+

i

)
logp

(
U+

i

)

q(xi)
−
∑

U−
i ∈UD−

L

∫ p
(
U−

i

)
logp

(
U−

i

)

q(xi)

⃒
⃒
⃒
⃒
⃒
⃒
. (15) 

It can be observed from Eq. (15) that as the value of amb increases, 
the classification of the current sample becomes more certain, whereas a 
smaller value of amb indicates a more ambiguous classification of the 
current instance X. The detailed flow of the active learning-based sam
pling strategy is shown as follows.  

Active Learning-based Sampling Strategy (PIDAC) 

Input: A labeled dataset DL, a candidate dataset DC, the number of selected instances 
k, the max number of iterations maxiter, 
Output: An optimal sample subset R 

1. Initialize R = DL and iter = 1. 
2. While iter ≤ maxiter and DC ∕= ∅ 
3. For each sample x ∈ DC 

4. Calculate the uncertainty via Eq. (15). 
5. End For 
6. Let xbest = argmin

x
(amb(x,R,DC)). 

7. Let R = R
⋃

xbest . 
8. Let DC = DC − {xbest}. 
9. Let iter = iter+ 1. 
10. End While 
11. Return the optimal sample subset R.  

4. Experiment results and analysis 

In this section, we will showcase the experimental configurations 
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and evaluate the performance and generalizability of our designed 
classification and active learning methods on various AD-related diag
nostic tasks. Our approach will be compared with several state-of-the-art 
methodologies to demonstrate its effectiveness. 

4.1. Dataset and experiment preparation 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, 
which can be obtained from https://adni.loni.usc.edu/, is currently the 
most extensively researched publicly accessible dataset for AD detec
tion. In this paper, we utilize a dataset consisting of 334 patients with 
Alzheimer’s Disease (AD), 431 patients with Normal Cognition (NC), 
258 patients with progressive Mild Cognitive Impairment (pMCI), and 
351 patients with stable Mild Cognitive Impairment (sMCI). The 
objective of this section is to validate the effectiveness of the designed 
model through the aforementioned dataset. To differentiate between 
pMCI and sMCI, we establish the criterion that patients who progress 
from MCI to AD within a period of three years are classified as pMCI, 
while those who do not show such progression are classified as sMCI. 
The specific details of the data are presented in Table 1. To facilitate 
better feature learning and classification, we pre-processed the original 
structural MRI data downloaded from ADNI. The specific processing 
process is consistent with the reference [6]. 

Our model consists of two primary modules, namely PLGLA and 
PIDAC, each with their unique set of parameters. The PLGLA network 
was trained using the SGD optimizer with a momentum of 0.9, weight 
decay of 0.01, and a learning rate of 5e-3. We trained this module for a 
maximum of 150 epochs, utilizing a batch size of 12 per epoch. On the 
other hand, we trained the PIDAC network using the Adam optimizer 

with a first momentum of 0.9, second momentum of 0.999, and learning 
rate of 1e-3. We set the maximum number of iterations to 100 and used a 
batch size of 12. The patch number and patch size are ultimately 
determined to be 60 and 32× 32× 32, respectively. In the parameter 
analysis part, we provide a detailed demonstration of the experimental 
performance by varying the number and size of patches. 

All experiments in this paper are run on a Windows 10-based per
sonal computer with 32.00 GB of RAM, equipped with an NVIDIA 
GeForce RTX 3080 Ti GPU and a 3.61 GHz Intel i7–12,700 CPU. All code 
implementations in this paper were carried out using the PyTorch deep 
learning framework based on Python 3.9 and PyTorch 1.12.1. 

We employ four metrics to assess the classification performance, 
namely Accuracy (ACC = (TP + TN)/(TP + FN + TN + FP)), Specificity 
(SPE = TN /(TN + FP)), Sensitivity (SEN = TP /(TP + FN)), and the area 
under curve (AUC), where TP, TN, FP and FN denote the true positive, 
true negative, false positive and false negative in the confusion matrix, 
respectively. Among them, ACC, SPE, and SEN are computed utilizing 
the default threshold value of 0.5. On the other hand, AUC is determined 
by examining all possible combinations of true positive rate (TPR =

SEN) and false positive rate (FPR = 1 − SPE), which involves modi
fying the threshold applied to the prediction outcomes derived from our 
trained PLGLA network. 

4.2. PLGLA compared with other alzheimer’s disease detection methods 

To showcase the capability of the proposed PLGLA classifier, we 
conduct a series of controlled experiments, including AD vs. NC, pMCI 
vs. sMCI, pMCI vs. NC, and sMCI vs. NC, on the ADNI dataset. In these 
experiments, the performance of the PLGLA method is compared with 
the eight state-of-the-art detection algorithms, namely VBM [35], ROI 
[36], PLM [37], DMIL [26], DM2L [38], HFCN [39], HybNet [40], and 
DA-MIDL [6], in terms of ACC, SPE, SEN, and AUC. All parameters and 
experimental data of the compared methods can be observed in Refer
ences [6] and [41]. For the sake of standardization, akin to the Refer
ences [6] and [41], we train the PLGLA classifier employing a five-fold 
cross-validation strategy. The specific experimental results are shown in 
Tables 2 and 3, where the optimal results for each metric are highlighted 
in bold. In particular, as algorithms DM2L and HybNet were not tested 
on the pMCI vs. NC and sMCI vs. NC groups, table 3 does not present the 
specific results for these two algorithms. 

As shown in Table 2, for the AD vs. NC and pMCI vs. sMCI pairwise 
comparison experiments, the PLGLA method achieved the best results in 

Fig. 5. The architecture of the implicit distributed learning block.  

Table 1 
The statistical information for subjects enrolled in ADNI.  

Class Male/ 
Female 

Age MMSE 

Alzheimer’s Disease (AD) 185/149 74.95±7.82 23.19±2.06 
Normal Cognition (NC) 208/205 74.75±5.73 29.06±1.12 
stable Mild Cognitive Impairment 

(sMCI) 
215/136 72.36±6.79 27.95±1.80 

progressive Mild Cognitive 
Impairment (pMCI) 

153/105 74.12±6.98 26.87±1.75 

Values are Reported as Mean ± Standard Deviation. 
MMSE: Mini-Mental State Examination. 

T. Wang and Q. Dai                                                                                                                                                                                                                            

https://adni.loni.usc.edu/


Pattern Recognition 150 (2024) 110341

9

the former, particularly with a remarkable ACC score of 0.967, signifi
cantly outperforming the second-ranked algorithm that attained 0.924. 
In the latter, PLGLA exhibited superior performance in terms of ACC and 
SPE, while slightly falling behind DA-MIDL in terms of SEN and AUC. As 
can be seen from Table 3, in the pMCI vs. NC experiment, the PLGLA 
method achieved a higher SPE result and a lower SEN result, indicating 
better performance in classifying pMCI while exhibiting comparatively 
poorer performance in classifying NC. While this may result in many 
cases of NC being misdiagnosed as pMCI, the greater harm, from a pa
tient’s health perspective, lies in misdiagnosing pMCI as NC [42]. In the 
sMCI vs. NC experiment, PLGLA obtained the optimal values of 0.830 
and 0.859 for the ACC and SEN metrics, respectively. However, it per
formed less favorably than HFCN and DA-MIDL in terms of the SPE and 
ranked slightly below DA-MIDL in terms of the AUC. Overall, consid
ering all experiments, the performance of PLGLA slightly outperforms 
the other comparative methods. 

4.3. PIDAC compared with other active learning algorithms under 
classifier PLGLA 

To evaluate the effectiveness of the designed sampling strategy 
PIDAC, this study compares it with three state-of-the-art active learning 
algorithms: DFAL [43], ASEs [44], and BALD [45], as well as a random 
sampling strategy: Random Sampling. In this section, we conducted a 
series of tests in terms of ACC, AUC, SPE, and SEN with different training 
sampling ratios (P), ranging from 10 % to 90 % with a step size of 10 %. 
The training set and test set were divided in an 8:2 ratio, and we fixed 
the number of iterations at 60. The specific experimental results for 
Tasks 1–4, representing AD vs. NC, pMCI vs. sMCI, pMCI vs. NC, and 
sMCI vs. NC, respectively, are presented in Tables 4 and 5. Due to space 
limitations, we only present the specific results of Random Sampling, 
BALD, and PIDAC in the Tables. 

To provide a more visually informative comparison of the 

Table 2 
Results of the classification of Alzheimer’s Disease (AD)/Normal Control (NC) and progressive Mild Cognitive Impairment (pMCI)/ stable Mild Cognitive Impairment 
(sMCI) using PLGLA along with other eight compared approaches.  

Methods AD vs. NC pMCI vs. sMCI 

ACC SEN SPE AUC ACC SEN SPE AUC 

VBM 0.816 0.756 0.875 0.883 0.679 0.629 0.717 0.709 
ROI 0.804 0.718 0.888 0.852 0.667 0.571 0.739 0.692 
PLM 0.848 0.846 0.850 0.905 0.716 0.657 0.761 0.732 
DMIL 0.892 0.859 0.925 0.950 0.765 0.714 0.804 0.790 
DM2L 0.911 0.935 0.881 0.959 0.769 0.824 0.421 0.776 
HFCN 0.905 0.897 0.913 0.942 0.778 0.686 0.848 0.812 
HybNet 0.919 0.824 0.945 0.965 0.827 0.579 0.866 0.793 
DA-MIDL 0.924 0.910 0.938 0.965 0.802 0.771 0.826 0.851 
PLGLA 0.967 0.955 0.976 0.965 0.828 0.727 0.910 0.819  

Table 3 
Results of the classification of progressive Mild Cognitive Impairment (pMCI) / Normal Control (NC) and stable Mild Cognitive Impairment (sMCI) / Normal Control 
(NC) using PLGLA along with other six compared approaches.  

Methods pMCI vs. NC sMCI vs. NC 

ACC SEN SPE AUC ACC SEN SPE AUC 

VBM 0.816 0.647 0.888 0.853 0.698 0.674 0.713 0.742 
ROI 0.789 0.618 0.862 0.846 0.675 0.652 0.688 0.698 
PLM 0.825 0.765 0.850 0.876 0.738 0.652 0.788 0.756 
DMIL 0.868 0.735 0.925 0.908 0.794 0.783 0.800 0.808 
HFCN 0.877 0.795 0.913 0.910 0.802 0.717 0.850 0.832 
DA-MIDL 0.895 0.824 0.925 0.917 0.825 0.804 0.838 0.860 
PLGLA 0.868 0.719 0.962 0.840 0.830 0.859 0.809 0.834  

Table 4 
ACC and AUC of three active learning algorithms with different values of P (%).  

Metrics P Random Sampling BALD PIDAC 

Task1 Task2 Task3 Task4 Task1 Task2 Task3 Task4 Task1 Task2 Task3 Task4 

ACC 10 % 0.613 0.541 0.519 0.516 0.740 0.598 0.563 0.601 0.760 0.598 0.644 0.575 
20 % 0.707 0.582 0.600 0.621 0.753 0.607 0.637 0.634 0.787 0.672 0.696 0.680 
30 % 0.753 0.607 0.585 0.673 0.847 0.664 0.748 0.699 0.900 0.697 0.785 0.739 
40 % 0.813 0.689 0.600 0.693 0.840 0.680 0.748 0.716 0.880 0.705 0.733 0.780 
50 % 0.813 0.688 0.719 0.732 0.907 0.689 0.682 0.726 0.913 0.765 0.822 0.824 
60 % 0.873 0.680 0.718 0.791 0.880 0.738 0.733 0.797 0.947 0.787 0.830 0.817 
70 % 0.900 0.773 0.726 0.804 0.913 0.762 0.770 0.804 0.920 0.836 0.852 0.837 
80 % 0.873 0.771 0.756 0.830 0.940 0.795 0.756 0.824 0.940 0.811 0.822 0.876 
90 % 0.880 0.738 0.763 0.843 0.887 0.762 0.822 0.850 0.960 0.830 0.859 0.876 

AUC 10 % 0.603 0.480 0.514 0.512 0.742 0.593 0.557 0.606 0.762 0.593 0.618 0.554 
20 % 0.695 0.560 0.597 0.624 0.752 0.606 0.594 0.635 0.783 0.640 0.676 0.681 
30 % 0.745 0.578 0.581 0.669 0.843 0.659 0.734 0.703 0.898 0.658 0.756 0.734 
40 % 0.807 0.660 0.595 0.689 0.838 0.677 0.731 0.716 0.879 0.677 0.710 0.776 
50 % 0.806 0.666 0.715 0.730 0.905 0.685 0.669 0.725 0.911 0.732 0.806 0.819 
60 % 0.868 0.668 0.715 0.794 0.878 0.731 0.718 0.792 0.946 0.784 0.809 0.812 
70 % 0.897 0.828 0.724 0.800 0.911 0.761 0.749 0.800 0.918 0.824 0.836 0.832 
80 % 0.870 0.754 0.753 0.832 0.939 0.791 0.728 0.825 0.938 0.789 0.799 0.874 
90 % 0.878 0.713 0.759 0.841 0.884 0.754 0.807 0.850 0.959 0.818 0.844 0.876  
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effectiveness of all five sampling strategies, we generated line graphs 
depicting the performance metrics for the four tasks. The specific results 
are presented in the Figs. 6-9, where the X-axis represents the percentage 
of sampled samples and the Y-axis represents the corresponding values 
of the metrics. 

As can be seen from Tables 4 and 5, due to the variations in the 

selected samples, the convergence effects of each training iteration also 
differ. As a result, significant discrepancies in experimental results arise 
at certain coordinate points. However, our designed PIDAC can select 
more representative samples for annotation, thereby exhibiting better 
and faster convergence. It can achieve classification performance close 
to the optimal results after 60 iterations. In contrast, other sampling 

Table 5 
SPE and SEN of three active learning algorithms with different values of P (%).  

Metrics P Random Sampling BALD PIDAC 

Task1 Task2 Task3 Task4 Task1 Task2 Task3 Task4 Task1 Task2 Task3 Task4 

SPE 10 % 0.728 0.819 0.725 0.566 0.705 0.703 0.841 0.554 0.718 0.703 0.763 0.723 
20 % 0.840 0.681 0.739 0.591 0.795 0.609 0.825 0.627 0.872 0.857 0.778 0.663 
30 % 0.852 0.736 0.768 0.723 0.936 0.766 0.813 0.663 0.949 0.875 0.901 0.783 
40 % 0.889 0.819 0.812 0.735 0.885 0.750 0.825 0.747 0.910 0.833 0.827 0.795 
50 % 0.888 0.792 0.855 0.759 0.948 0.766 0.738 0.735 0.962 0.829 0.889 0.868 
60 % 0.938 0.736 0.884 0.759 0.936 0.859 0.800 0.855 0.974 0.844 0.913 0.868 
70 % 0.939 0.875 0.783 0.843 0.962 0.797 0.863 0.843 0.962 0.889 0.914 0.892 
80 % 0.914 0.847 0.855 0.807 0.974 0.875 0.900 0.807 0.987 0.922 0.914 0.892 
90 % 0.901 0.847 0.928 0.868 0.948 0.922 0.888 0.843 0.987 0.875 0.925 0.880 

SEN 10 % 0.478 0.240 0.303 0.457 0.778 0.483 0.273 0.657 0.806 0.483 0.473 0.386 
20 % 0.551 0.440 0.455 0.657 0.709 0.603 0.364 0.643 0.694 0.423 0.574 0.700 
30 % 0.638 0.420 0.394 0.614 0.750 0.552 0.655 0.743 0.847 0.440 0.611 0.686 
40 % 0.725 0.500 0.379 0.643 0.792 0.603 0.636 0.686 0.847 0.520 0.593 0.757 
50 % 0.724 0.540 0.576 0.700 0.861 0.603 0.600 0.714 0.861 0.635 0.722 0.771 
60 % 0.797 0.600 0.546 0.829 0.819 0.604 0.636 0.729 0.917 0.724 0.704 0.757 
70 % 0.855 0.780 0.667 0.757 0.861 0.724 0.637 0.757 0.875 0.760 0.759 0.771 
80 % 0.826 0.660 0.652 0.857 0.902 0.707 0.546 0.843 0.889 0.655 0.685 0.857 
90 % 0.855 0.580 0.591 0.814 0.819 0.586 0.727 0.857 0.931 0.760 0.764 0.871  

Fig. 6. Comparison results of five sampling methods on Task 1 (AD vs. NC).  

Fig. 7. Comparison results of five sampling methods on Task 2 (pMCI vs. sMCI).  

Fig. 8. Comparison results of five sampling methods on Task 3 (pMCI vs. NC).  
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algorithms, especially Random Sampling strategies, fail to timely select 
more representative samples for annotation, thus impacting the 
convergence speed and classification accuracy of the model to varying 
extents. Since BALD cannot directly process image data, we initially 
employ a 3D-MLP module to reduce its dimensionality. Subsequently, 
sampling is conducted on the reduced data. However, this approach may 
unavoidably result in the loss of critical information. Consequently, 
BALD may not be applicable for directly sampling image data, particu
larly when dealing with complex three-dimensional structures. 

From Figs. 6-9, it can be observed that for the two deep learning- 
based active learning methods, DFAL and AEs, their sample selection 
strategies are more suitable for image data compared to BALD and 
Random Sampling. Consequently, after selecting a sufficient number of 
valuable samples for annotation, they can achieve classification per
formance close to the optimal results at around the 70 % coordinate 
point. However, our proposed PIDAC approach can achieve the same 
results at the 50 %− 60 % coordinate points. In summary, the sampling 
strategy based on patch instance distribution, PIDAC, facilitates the se
lection of more valuable and informative samples for annotation in a 
faster and earlier manner. As a result, the model can achieve excellent 
classification performance using fewer samples. 

4.4. Ablation study 

In this section, we conducted ablation experiments on the designed 
patch pre-selection module and two attention mechanism modules 
separately for four comparative tasks: AD vs. NC, pMCI vs. sMCI, pMCI 
vs. NC, and sMCI vs. NC. The parameters of Patch Number and Patch 
Size were set to 60 and 32, respectively. Due to the high correlation 
among the four metrics (ACC, AUC, SPE, and SEN), in this section, we 
only used the accuracy metric as the evaluation criterion, and the 
optimal values for each experimental group are indicated in bold. 

For the patch pre-selection strategy, we selected three other patch 
pre-selection methods for comparative experiments, namely random 
patch pre-selection (Random Selected), patch pre-selection based on 
Euclidean distance similarity (Euclidean Distance), and patch pre- 
selection based on t-test (t-test). The specific results are shown in 
Table 6. 

For the PLGLA network model, we designed additional network 
model for comparative experiments, namely PLGLA without attention 
mechanism (No Attention), PLGLA without global attention mechanism 
(Local Attention), and PLGLA without local attention mechanism 
(Global Attention). The specific numerical results are shown in Table 7. 

To provide a more intuitive comparison of the results, we designed 
two line graphs based on the data in Tables 6 and 7. The graphs, shown 

in Fig. 10, have four points on the horizontal-axis representing the four 
comparative tasks: AD vs. NC, pMCI vs. sMCI, pMCI vs. NC, and sMCI vs. 
NC. The vertical-axis represents the accuracy metric for each task. 

As can be seen from the above tables and figures, in the process of 
active learning sampling, the achieved final results are closely related to 
the pre-selected patches and the weights of the patches output by the 
global attention mechanism in the network model. Therefore, the 
aforementioned two sets of ablation experiment also indirectly demon
strate the significant importance of the designed modules in the sam
pling process. 

4.5. Parametric analyses 

In our model, two crucial parameters, namely the Patch Number and 
the Patch Size, require manual configuration. Hence, this section pre
sents the final classification results obtained by experimenting with 
different parameter settings. Specifically, the Patch Size is selected from 
the set {24 × 24 × 24, 32 × 32 × 32, 40 × 40 × 40}, and the Patch 
Number is chosen from the set {45, 60, 75}. The specific numerical 
outcomes are provided in Table 8. 

For better visualization, we generated four bar charts based on the 
aforementioned table, where Tasks 1–4 represent AD vs. NC, pMCI vs. 
sMCI, pMCI vs. NC, and sMCI vs. NC, respectively. Moreover, to enhance 
the comparability of metrics, we performed a normalization operation 
on each metric in the bar chart, scaling all results to the range of [0.1, 1]. 
Please refer to Fig. 11 for specific details. The X-axis is represented by a 
pair of parameters in the form of (Batch Number, Batch Size), and the Y- 
axis represents four metrics. 

Based on the comprehensive results shown in the Table 8 and Fig. 11, 
selecting a large number or size of patches may result in the inclusion of 
a significant amount of irrelevant information, while choosing too few 
or small patches may lead to the loss of crucial information. Only by 
selecting an appropriate number and size of patches can a stable 
experimental outcome be consistently maintained. Therefore, this study 
ultimately selects a Patch Number of 60 and a Patch Size of 32× 32×

32. 

5. Discussion 

In this section, we further elaborate on the model designed in this 
paper from four perspectives: statistical analysis, efficiency, visualiza
tion, and generality. 

Fig. 9. Comparison results of five sampling methods on Task 4 (sMCI vs. NC).  

Table 6 
The specific numerical results for four patch pre-selection strategies.   

AD vs. NC pMCI vs. sMCI pMCI vs. NC sMCI vs. NC 

Random Selected 0.743 0.698 0.706 0.679 
Euclidean Distance 0.921 0.799 0.826 0.811 
t-test 0.944 0.812 0.845 0.817 
our 0.967 0.828 0.868 0.830  

Table 7 
The specific numerical results of PLGLA and its three variants.   

AD vs. NC pMCI vs. sMCI pMCI vs. NC sMCI vs. NC 

No Attention 0.921 0.802 0.844 0.809 
Local Attention 0.933 0.807 0.850 0.810 
Global Attention 0.958 0.816 0.861 0.828 
PLGLA 0.967 0.828 0.868 0.830  
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5.1. Statistical analysis 

In this subsection, the Friedman test [46] is used to demonstrate the 
statistically performance of all the methods under different evaluation 
metrics (detailed results are illustrated in Tables 2-5, 8). Suppose we 
compare the performance of K kinds of algorithms on N datasets or tasks, 
the formula for the Friedman’s test is as follows: 

τχ2 =
12N

K(K + 1)

(
∑K

j=1
R2

j −
K(K + 1)2

4

)

(16)  

τF =
(N − 1)τχ2

N(k − 1) − τχ2
(17)  

where Rj represents the average ranking of the j-th algorithm, and τF 

follows the F distribution with degrees of freedom K − 1 and (K − 1)(N −

1). If τF exceeds the critical value from the F distribution with degrees of 
freedom K − 1 and (K − 1)(N − 1), it indicates that the assumption of 
equal performance among all algorithms is rejected. In this scenario, we 
employ the Nemenyi test [47] to further distinguish each method. 
Suppose that performance of K kinds of algorithms is compared on N 
datasets or tasks and the significance level α = 0.1, the critical value of 

the Nemenyi test is expressed as CD = qα

̅̅̅̅̅̅̅̅̅̅̅̅
K(K+1)

6N

√

, where qα indicates the 
critical value of the Tukey distribution. If the difference between the 
average ranks of two algorithms exceeds the critical value CD, then the 
hypothesis of “equal performance between the two algorithms” is 
rejected with the corresponding confidence level. 

Based on the ACC, SEN, SPN and AUC metrics for the four kinds of 

binary symptom diagnose tasks (AD vs. NC, pMCI vs. sMCI, pMCI vs. NC, 
sMCI vs. NC) in Tables 2 and 3, Table 9 displays the average rankings of 
the nine methods across the four different indicators for each task. It 
should be noted that due to the absence of results for the DM2L and 
HybNet algorithms in the pMCI vs. NC and sMCI vs. NC tasks, these two 
algorithms are assigned a joint rank of last place for the computation of 
rankings. From Table 9, we can calculate the τF values for four indicators 
as 5.6627, 5.0362, 6.0732 and 4.1287, respectively. Sinc all the τF 
values are greater than F(8, 24) = 1.940, it indicates that the perfor
mances of the nine algorithms in Tables 2 and 3 are significantly 
different. We present the Nemenyi test results of the nine algorithms for 
the four indicators in an intuitive manner, as depicted in Fig. 12. If there 
is no line with the same color between the two methods in the figure, it 
suggests that the average ranking difference between the two methods 
exceeds the critical difference (CD), thus the performance of the top- 
ranked method is significantly better than that of the lower-ranked 
method. Fig. 12 indicates that PLGLA performs significantly better 
than ROI in terms of ACC and significantly better than DM2L in terms of 
SPE. 

Based on the comparisons of PIDAC with four other active learning 
methods, Table 10 summarizes the average ranking of all algorithms 
across each metric. For convenience, we utilize the average values of 
each metric across the selected sample size range from 10 % to 90 %, as 
presented in Tables 4 and 5, as the criterion for ranking. On the basis of 
the results in Table 10, we compute the τF values of four metrics are 
15.4615, 8.4286, 31.2857 and 15.4615, respectively. Because all the τF 
values are greater than F(4, 12) = 2.480, there are significant differ
ences among the five algorithms. Fig. 13 provides a visual 

Fig. 10. Comparative analysis of two ablation studies across four tasks.  

Table 8 
The numerical results with different parameter settings.  

Patch Size 24 32 40 

Patch Number 45 60 75 45 60 75 45 60 75 

AD 
vs. 
NC 

ACC 0.897 0.865 0.860 0.933 0.967 0.953 0.947 0.961 0.952 
SEN 0.887 0.797 0.824 0.899 0.955 0.922 0.922 0.969 0.952 
SPE 0.911 0.921 0.890 0.972 0.976 0.977 0.965 0.954 0.954 
AUC 0.899 0.859 0.857 0.935 0.965 0.949 0.944 0.961 0.953 

pMCI 
vs. 
sMCI 

ACC 0.689 0.702 0.747 0.730 0.828 0.771 0.697 0.697 0.787 
SEN 0.380 0.296 0.553 0.548 0.727 0.714 0.471 0.500 0.630 
SPE 0.798 0.848 0.785 0.917 0.910 0.818 0.859 0.853 0.912 
AUC 0.589 0.572 0.669 0.733 0.819 0.766 0.666 0.677 0.771 

pMCI 
vs. 
NC 

ACC 0.785 0.861 0.770 0.822 0.868 0.854 0.800 0.824 0.852 
SEN 0.620 0.732 0.655 0.685 0.962 0.943 0.645 0.709 0.938 
SPE 0.882 0.937 0.850 0.914 0.719 0.660 0.932 0.900 0.727 
AUC 0.751 0.834 0.752 0.799 0.840 0.801 0.788 0.805 0.832 

sMCI 
vs. 
NC 

ACC 0.771 0.719 0.771 0.821 0.830 0.811 0.669 0.613 0.688 
SEN 0.730 0.652 0.730 0.737 0.859 0.685 0.354 0.194 0.414 
SPE 0.810 0.774 0.810 0.896 0.809 0.925 0.875 0.951 0.892 
AUC 0.770 0.713 0.770 0.817 0.834 0.805 0.614 0.573 0.653  
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representation of the Nemenyi test results for the five algorithms across 
the four metrics. It is evident that PIDAC significantly outperforms 
Random Sampling in all metrics and exhibits significant superiority over 

BALD in the SPE metric. 
Similarly, Table 11 presents the ranking results of the nine parameter 

combinations from Table 8 across the four metrics. By calculating the τF 
values for ACC, SEN, SPE, and AUC, we obtain them to be 3.5011, 
1.5212, 2.8537, and 3.4358, respectively. It is noteworthy that a situ
ation arises where the τF value for SPE is less than the critical value F(8,
24) = 1.940. Therefore, in our study, we observe no significant dif

ferences in the SEN metric among the discussed nine parameter com
binations, while significant differences exist in the other metrics. A more 
intuitive Nemenyi test results are illustrated in Fig. 14. 

Fig. 11. The visualization of the parameters (Patch Number, Patch Size) on ADNI dataset.  

Table 9 
Average rankings of nine algorithms on four tasks for ACC, SEN, SPN, and AUC metrics.   

VBM ROI PLM DMIL DM2L HFCN HybNet DA-MIDL PLGLA 

ACC 7 8 6 4.88 6.5 3.5 5.5 2 1.63 
SEN 6.5 7.88 5.38 4 5 3.75 8 2 2.5 
SPE 6.75 6.5 6.75 3.88 8.25 3.25 5.25 2.88 1.5 
AUC 6.75 7.75 5.75 4.25 6.75 3.5 5.75 1.25 3.25  

Fig. 12. Statistical analysis of nine classification methods across four metrics.  

Table 10 
Average rankings of five active learning algorithms on four tasks for ACC, SEN, 
SPN, and AUC metrics.   

Random Sampling BALD DFAL ASEs PIDAC 

ACC 5 3.5 2 3.25 1.25 
SEN 5 2.5 1.75 3.75 2 
SPE 4.75 4 2 3.25 1 
AUC 5 3.5 2 3.25 1.25  
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5.2. The efficiency of proposed methods 

Considering the significance of computational speed in the field of 
medical image diagnostics, in this subsection, we conducted an analysis 
of both time complexity and model complexity for patch pre-selection 
and the PLGLA model, respectively. In Section 3.1, assuming that the 
provided ADNI dataset comprises n samples, with each MR image being 
divided into m patches, and each patch potentially containing f pixels, 
we first compute the distances between all paired samples based on the 
hash similarity between blocks, so the approximate time complexity of 
this step is O(n⋅m⋅f). Next, we proceed with updating the weights for 
each patch. Given that we need to consider all other samples within the 
k-nearest neighbor vicinity for each sample, the time complexity of 
feature weight updating can be expressed as O(k⋅n⋅m). Furthermore, as 
our patch pre-selection module employs the principle of sampling 
detection, we repeat the sampling process for a maximum of max iter 
iterations. In each iteration, we select s (s < n) samples for weight 
updating. Consequently, the overall time complexity of the designed 
patch pre-selection can be expressed as O(n⋅m⋅f)+ O(max iter⋅k⋅s⋅m). 

In practical applications, it is common for max iter and k to be small 
constants, typically not exceeding 10. Therefore, we can derive 
O(max iter⋅k⋅s⋅m) < O(n⋅m⋅f), whereas the time complexity O(n⋅m⋅f) for 
computing the distances between patches is an unavoidable time cost in 
all existing patch pre-selection strategies. Hence, the time spent on the 
patch pre-selection strategy designed in Section 3.1 is comparable to 
that of other existing patch pre-selection approaches. Moreover, it is 
important to note that the patch pre-selection strategy can be performed 
offline, i.e., The selected patches can be obtained before starting the 
model training process, without incurring any additional time cost 
during the training or inference processes. 

In Section 4.2, we have validated the improved accuracy of PLGLA 
model, next, to further evaluate its computational resource efficiency, 
we selected the DA-MIDL model, which has the closest performance to 
PLGLA, as a comparison. Our comparative analysis encompassed three 
key aspects: model size, number of parameters, and floating-point op
erations. The specific comparative results are shown in Table 12. It can 
be observed that the PLGLA model demonstrated a model size that was 
two-thirds smaller than that of DA-MIDL, a reduction of three-quarters 
in parameter count, and approximately half the number of floating- 
point operations. Consequently, PLGLA achieves higher classification 
accuracy while operating in a more resource-efficient manner. 

5.3. Visualization 

In this section, we performed visualization on patients with Alz
heimer’s Disease (AD) and Mild Cognitive Impairment (MCI). The spe
cific results are shown in Fig. 15. The left half of the figure displays three 
AD patients, while the right half shows three MCI patients. Considering 
the limitations of visualizing 3D images, in this figure, we sliced the 
images from different perspectives (axial, coronal, sagittal) and 
demonstrated the relative important patches and relative important 
microstructures within each slice. In Fig. 15, the regions annotated with 
red boxes are considered the most crucial locations by our model. We 
can observe that the informative areas, indicated by the red color, are 
predominantly located at the edges of the sulcus gyrus and gray matter. 
These regions may effectively reflect local structural changes caused by 
brain atrophy. Furthermore, the probable pathological locations in AD 
classification and MCI conversion prediction exhibit significant simi
larity, which aligns with the high correlation between the two classifi
cation tasks based on the progression of Alzheimer’s disease. In 
conclusion, we believe that the proposed approach can assist brain sci
ence experts to some extent in the diagnosis of AD, thereby reducing 
misdiagnosis rates. 

5.4. Generalization on AIBL dataset 

To substantiate the robustness and generalizability of our model, we 
extend our evaluation to an independent AIBL dataset (https://aibl. 

Fig. 13. Statistical analysis of five active learning methods across four metrics.  

Table 11 
Average rankings of nine kinds of parameters on four tasks for ACC, SEN, SPN, and AUC metrics.   

(24, 45) (24, 60) (24, 75) (32, 45) (32, 60) (32, 75) (40, 45) (40, 60) (40, 75) 

ACC 7.125 5.5 6.625 4.75 1 3 6.875 5.875 4.25 
SEN 6.875 5.75 7.625 2.5 5 5 3.75 3.875 4.625 
SPE 6.875 7 5.625 4.75 1.25 3.375 6.875 5.25 4 
AUC 7.125 6.25 6.875 4.5 1 3.75 6.75 5 3.75  

Fig. 14. Statistical analysis of nine parameter combinations across four metrics.  

Table 12 
Comparative analysis of PLGLA and DA-MIDL models in terms of Model Size, 
Parameters, and Flops.  

Model Model Size (KB) Parameters (× 106) Flops (× 109) 

DA-MIDL 3366 0.86 40.7 
PLGLA 931 0.23 21.7  
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csiro.au). This evaluation encompasses the assessment of our PLGLA 
method as well as its competing methods, all of which were trained on 
the ADNI dataset. The AIBL dataset utilized in our study comprises 100 
samples of AD, 198 samples of NC, 23 samples of pMCI, and 62 samples 
of sMCI. The specific experimental results for AD classification and MCI 
conversion prediction on the AIBL dataset are presented in Table 13. All 
numerical values are derived from reference [6]. As observed in 

Table 13, our model continues to maintain a leading position in the 
majority of cases within the AIBL dataset. Therefore, these results 
demonstrate the sound generalization capability of our model for AD 
diagnosis. 

Fig. 15. The visualization of AD and MCI subjects.  

Table 13 
Results of AD classification and MCI conversion prediction using PLGLA along with other six compared approaches on the AIBL dataset.  

Methods AD vs. NC pMCI vs. sMCI 
ACC SEN SPE AUC ACC SEN SPE AUC 

VBM 0.808 0.582 0.866 0.817 0.673 0.529 0.720 0.717 
ROI 0.793 0.519 0.863 0.796 0.664 0.471 0.710 0.671 
PLM 0.839 0.722 0.870 0.846 0.709 0.529 0.742 0.725 
DMIL 0.868 0.772 0.893 0.901 0.764 0.588 0.796 0.793 
HFCN 0.889 0.823 0.906 0.930 0.782 0.647 0.806 0.796 
DA-MIDL 0.902 0.848 0.915 0.939 0.809 0.706 0.828 0.824 
PLGLA 0.923 0.910 0.929 0.940 0.813 0.739 0.807 0.833  
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6. Conclusion 

In this study, we propose a patch-based multi-instance Alzheimer’s 
Disease detection network that incorporates a global and local attention 
mechanism, along with a novel active learning strategy based on the 
instance distribution, which consists of three major components: (1) A 
patch pre-selection module was designed to identify regions that are 
more prone to pathology, while excluding a large amount of background 
areas and irrelevant information for further investigation. (2) An inner- 
patch local attention block and an outer-patch global attention block 
were developed to assist the network model in extracting more 
discriminative local and global information. (3) An active learning 
sampling strategy was devised to reduce the cost of data acquisition and 
expert annotation in real-world scenarios. Through four comprehensive 
experiments on the ADNI dataset, we have validated the effectiveness of 
our proposed network framework and active learning strategy from 
multiple perspectives. 

The two proposed models in this study, PLGLA and PIDAC, are 
designed to achieve higher accuracy in Alzheimer’s disease diagnosis 
while utilizing lower resources and reducing annotation costs. The 
PLGLA model achieves higher accuracy compared to suboptimal models 
while reducing computational resource and space consumption by 
approximately half. The PIDAC method effectively reduces annotation 
costs by 30 % or even higher. 

However, there are still some remaining issues that need to be 
addressed, which can be outlined as follows. The patch preselection 
module we designed is based on the Relief algorithm, which introduces a 
certain level of randomness in the patch selection process. Conse
quently, when randomly selecting samples of poor quality, it may 
impact the weight scores of critical patches. Furthermore, our model 
only considers the MRI modality in the ADNI dataset, neglecting other 
modalities such as DTI and PET. This limitation may constrain further 
improvements in model performance. Therefore, in future work, we aim 
to address these issues and conduct research focusing on the multi- 
modal domain. 
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